Probe Region Expression Estimation for RNA-Seq Data for Improved Microarray Comparability
نویسندگان
چکیده
Rapidly growing public gene expression databases contain a wealth of data for building an unprecedentedly detailed picture of human biology and disease. This data comes from many diverse measurement platforms that make integrating it all difficult. Although RNA-sequencing (RNA-seq) is attracting the most attention, at present, the rate of new microarray studies submitted to public databases far exceeds the rate of new RNA-seq studies. There is clearly a need for methods that make it easier to combine data from different technologies. In this paper, we propose a new method for processing RNA-seq data that yields gene expression estimates that are much more similar to corresponding estimates from microarray data, hence greatly improving cross-platform comparability. The method we call PREBS is based on estimating the expression from RNA-seq reads overlapping the microarray probe regions, and processing these estimates with standard microarray summarisation algorithms. Using paired microarray and RNA-seq samples from TCGA LAML data set we show that PREBS expression estimates derived from RNA-seq are more similar to microarray-based expression estimates than those from other RNA-seq processing methods. In an experiment to retrieve paired microarray samples from a database using an RNA-seq query sample, gene signatures defined based on PREBS expression estimates were found to be much more accurate than those from other methods. PREBS also allows new ways of using RNA-seq data, such as expression estimation for microarray probe sets. An implementation of the proposed method is available in the Bioconductor package "prebs."
منابع مشابه
prebs User Guide
The prebs package aims at making RNA-sequencing (RNA-seq) data more comparable to microarray data. The comparability is achieved by summarizing sequencing-based expressions of probe regions using standard microarray summarization algorithms: RPA (Lahti et al., 2011) or RMA (Irizarry et al., 2003). The pipeline takes mapped reads in BAM format as an input and produces either gene expressions or ...
متن کاملComparison of RNA-Seq and Microarray in Transcriptome Profiling of Activated T Cells
To demonstrate the benefits of RNA-Seq over microarray in transcriptome profiling, both RNA-Seq and microarray analyses were performed on RNA samples from a human T cell activation experiment. In contrast to other reports, our analyses focused on the difference, rather than similarity, between RNA-Seq and microarray technologies in transcriptome profiling. A comparison of data sets derived from...
متن کاملRe - using public RNA - Seq data
Next Generation Sequencing (NGS) methods are rapidly becoming the most popular paradigm for exploring genomic data. RNA-Seq is a NGS method that enables gene expression analyses. Raw sequencing data generated by researchers is actively submitted to public databases as part of the requirements for publishing in academic journals. Raw sequencing data is quite large in size and analysis of each ex...
متن کاملInvestigating the Function of Predicted Proteins from RNA-Seq Data in Holstein and Cholistani Cattle Breeds
This study was performed to determine the digital expression profile of different genes expressed in Holstein and Cholistani breeds as well as to evaluate the performance of predicted proteins derived from differentially expressed genes between these two breeds using RNA-Seq data. For this purpose, the whole mRNA sequence for a blood sample of American Holstein and Pakistani Cholistani cattle p...
متن کاملNew insights into the blood-stage transcriptome of Plasmodium falciparum using RNA-Seq
Recent advances in high-throughput sequencing present a new opportunity to deeply probe an organism's transcriptome. In this study, we used Illumina-based massively parallel sequencing to gain new insight into the transcriptome (RNA-Seq) of the human malaria parasite, Plasmodium falciparum. Using data collected at seven time points during the intraerythrocytic developmental cycle, we (i) detect...
متن کامل